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Abstract 

Algorithms for intelligent data understanding have the potential to improve the value of science 
data for research and applications.  This potential has been demonstrated on a limited-scale basis.  
However, the enormous volume of science data relative to the performance of IDU algorithms 
raises serious questions regarding feasibility for actual use.  Initial assessments of scalability 
indicate that it could take hundreds of years to process just one year of EOS science data.  This 
paper takes a deeper look into the issues of data volume and scalability in an attempt to identify 
specific areas where intelligent data understanding algorithms could be practically applied on an 
operational basis to increase the utilization and overall value of collected science data.  In the 
course of this investigation, implications for the architecture and performance of a knowledge 
building system are also discussed.  We conclude that the actual volume that must be processed 
by these algorithms to produce meaningful results varies widely, from as little as 0.00006% to as 
much as 100% of the archive.  This corresponds to data volumes ranging from 2 GB to 4 PB for 
current Earth science holdings.  The volume to be processed by computationally intensive 
induction and clustering algorithms can be controlled by focusing on subsets of high level 
products and statistical summaries, which are probably more suitable for these algorithms 
anyway in terms of information content and representation.  Less computationally intensive 
algorithms, such as matched filters for event detection, can reasonably be run against the entire 
archive volume. Simply unleashing complex algorithms (such as unsupervised classification) 
against substantial portions of the total volume is not currently feasible, and will probably remain 
so for at least the coming decade.   

Various factors affecting the volume of data to be mined are considered in general, and also for 
each of the five envisioned intelligent archive capabilities (Virtual Data Products, Autonomous 
Event Detection, Automated Data Quality Assessment, Large Scale Data Mining, and Dynamic 
Feedback Loops).  This provides an analytical framework for bounding the data volumes 
problem for various applications.  An example based on fire prediction is used to illustrate the 
use of this framework, and reveals that the data volumes involved in Earth science make mining 
such data challenging but not impossible.   
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Preface 

Purpose and Scope 
This document is one of a series of papers developed under the IDU project Intelligent Archives 
in the Context of Knowledge Building Systems .  The purpose of this paper is to examine the 
feasibility of performing large scale data mining from the perspective of science data volumes 
(esp., Earth science) prior to examining the feasibility from other technical perspectives.   
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Organization of This Document 
The paper begins in §1.1 with a brief examination of the current and projected data volumes and 
computational capacity in the EOS archives to establish the scale of the overall challenge for 
large scale data mining.  In §1.2 we examine factors that would serve to reduce (or increase) the 
total data volume.  In §1.3 we consider the primary factors that must be considered in 
conjunction with data volume assessments in order to make any judgment regarding feasibility.  
The discussion in these sections is combined in §1.4 within the context of each envisioned 
capability of the intelligent archive of the future, and we summarize the results of this assessment 
in §1.6.  Note that this document has been structured with the intent of incorporating it as an 
appendix into one of the other papers resulting from this project.   
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1 Data Volume Considerations for IA-KBS 
The preliminary results of the IA-KBS project indicate that there are a number of ways 
intelligent data understanding (IDU) algorithms could be applied to realize additional value from 
science data for research and applications [9,6].  These include a fairly detailed analysis of 
specific applications in agriculture [3], weather forecasting [2], and observatories [4], as well as 
more general uses in virtual data products [1], data quality assessment [5], and system 
performance optimization [8].   

However, the enormous volume of science data relative to the performance of IDU algorithms 
raises serious questions regarding feasibility for actual use.  Initial assessments of scalability 
indicate that it could take roughly two hundred years to mine just one year of EOS science data 
[7].  To better understand the feasibility of mining large volumes of science data in general, and 
Earth science data in particular, we must take a deeper look at the problem.   

1.1 Scoping the Challenge 

1.1.1 Total Data Volume 

The total current and projected data volume of Earth science data is indeed large by any measure, 
exceeding four petabytes today and accumulating at roughly two terabytes per day for the 
foreseeable future.  The figure below shows the accumulated volume of Earth science data that 
could be considered for mining1.   

                                                

 

1  This projection excludes L0 volumes except for those missions where only L0 products are permanently archived. Raw data 
products equivalent to EOS Level 1A are included.  EOS-ECS instrument daily archive volume requirements are taken from 
ESDIS F&PRS documentation. All other mission instruments also are included at 1X of the daily data rates.  Missions/ 
platforms included in the analysis are ERBS, UARS, TOPEX / POSEIDON, RADARSAT-1, Earth Probe, OrbView-2, 
TRMM, Landsat 7, QuikScat, Terra, DAS, ACRIMSAT, NOAA GOES-11, CHAMP, NOAA-16, NMP/EO-1, NOAA GOES-
12, Jason-1, METEOR 3, GRACE, Aqua, NOAA-17, Midori-II, ICESat-1, SORCE, Aura, TOMS Follow-on (Aura), NOAA-
N, NOAA GOES-N, ISS, Cloudsat, CALIPSO, NMP/EO-3, Glory, NPP, OSTM, GCOM A1, NOAA GOES-O, GCOM B1, 
OCO, LDCM, NOAA-N', Aquarius, NOAA          GOES-P, GPM-Core, GPM-Constellation, NPOESS C1, Hydros, NPOESS 
C2, LightSAR, and DSCOVR (Triana). 
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1. Volume projections include planned ESE NASA 
and NOAA related missions.
2. No additional reprocessing loading included. 

Most of the IDU projects tested algorithms against less than a few megabytes of data, and none 
appear to have tackled more than a gigabyte of data.  This large disparity (nine orders of 
magnitude) between the volume of available for mining and the volume used in the research 
projects clearly raises questions as to the feasibility of moving IDU algorithms from a research 
setting to an operational setting.   

1.1.2 Total Computing Load 

A rough assessment of computing resources also provides some perspective on mining large 
volumes of data.   

While a detailed inventory and measure of available computing resources would be time 
consuming to obtain, a rough approximation can be derived from a sample of current science 
processing.  For example, MODIS daily processing requires roughly 1000 to 1700 MFLOPS to 
process an estimated 125 to 170 GB of data2 for L2 and L3 data processing (respectively) [11].  
This implies roughly 400 instructions per byte for contemporary science data processing.   

Unfortunately, none of the IDU research projects quantified the absolute runtime performance of 
the algorithms used because they were primarily focused on performance in terms of the 
accuracy of the result.  The best performance information available is that one unsupervised 
algorithm took 80 minutes to classify a 7000x6500 pixel Landsat scene consisting of six spectral 

                                                

 

2  L1 data is estimated to be 25% smaller than L2 data.   
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bands.  Assuming 25 MFLOPS per processor and 1.5 bytes per pixel per band implies about 
20,000 operations per byte.   

Since science data processing systems are sized to the current workload, the above estimates 
imply that mining all data using an unsupervised algorithm would require 50 times the available 
computing resources.  While this is a large difference, it is small enough that there is some hope 
of feasibility if we are somewhat frugal in how we apply data mining and if improvements in 
processing capacity continue to follow Moore s law.   

Still, the total computing load is significant.  A compute requirement of 400 instructions per byte 
on the entire data stream of 2 TB/day implies a total computing capacity of about 10 GFLOPS 
for current science algorithms.  A data mining load 50 times greater would require 500 GFLOPS 
of computing capacity.   

1.1.3 Total Storage Throughput 

The total data volume estimate also has implications for storage throughput.  Storage throughput 
can actually be more important that computational load because the throughput of storage 
devices has been increasing at a slower rate than processors.  Contemporary disk drive 
throughput is roughly 30 MB/s.  Reading an entire 4 PB archive in one month would require the 
equivalent throughput of only 130 disk drives operating in parallel.  This somewhat surprising 
result would lead us to conclude that storage throughput is not a primary concern for data 
mining, if there was only the need to make only a single pass through the data.   

The problem, of course, is that many algorithms (such as clustering and supervised classifier 
training) need to make more than one pass through the data.  In fact, algorithms that make more 
than one pass through the data will commonly make hundreds or thousands of passes.3  If the 
analysis performed on each pass cannot be constrained to a limited subset (say, a limited 
geographic area), the data must be retrieved from storage again on each pass.  A thousand-fold 
increase in the storage throughput requirement suggested above similarly increases the level of 
concern about storage system throughput.   

On top of this, it should be clear that one algorithm will not suffice for all purposes, so many 
algorithms will need to be run.  A hundred algorithms potentially means a hundred passes 
through the data.   

From this brief analysis, we can make a few observations: 

 

The specific type of algorithms deployed in the near term will have to be considered 
carefully, and in the near term global analysis may need to be restricted to certain 
algorithms (such as matched filters used for event detection or induction algorithms based 
on statistical analysis) that require only a single-pass through the data.   

                                                

 

3  For example, back-propagation neural network training commonly take 5000 passes to converge, though research on 
geospatial datasets indicates the number of iterations can be reduced to a few hundred passes with good classification 
performance.  See, for example, Gordon German, Neural network classifiers for GIS data: improved search strategies , 
http://www.geovista.psu.edu/sites/geocomp99/Gc99/093/gc_093.htm.  

http://www.geovista.psu.edu/sites/geocomp99/Gc99/093/gc_093.htm
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In the longer term, new system architectures that allow data mining algorithms to be 
distributed down into the storage system could provide greater parallelism to address 
storage throughput concerns. 

 
To effectively distribute data mining, new distributed algorithms that combine local 
analysis with global information sharing, such as those investigated by Kumar, will be 
needed.   

 

Processing schemes that allow multiple algorithms to share a data pipeline and avoid 
redundant data retrievals will be needed as the number of algorithms increases.   

1.2 Examining the Challenge 
Based on the initial scope of the challenge, it is clear that a simplistic approach of unleashing 
unsupervised algorithms on the entire volume of an archive is not feasible within the next 
decade.  The following sections take a closer look at various aspects of the problem and data 
mining to identify potential approaches to finding an appropriate fit.   

1.2.1 Data Product Levels 

The most obvious response to an overwhelming volume of data is to only mine a subset of that 
data.   

Much of the information contained within an archive may be redundant, having been processed 
through a variety of levels from raw instrument readings (L0) to gridded science parameters 
(L3).  For science purposes, the lower level data products must be archived since there is no 
guarantee that the information there can be totally recovered from the higher level products.  By 
the same token, it is reasonable to assume that most interesting information is in fact preserved 
across data levels.   

An examination of statistics for an instrument such as MODIS shows that L0, L1, L2, and L3 
data products respectively account for 10%, 33%, 43%, and 14% of the total data volume 
[11,10].  A broader analysis of DAAC holdings shows the following distribution. 

Discipline
Level 0 

Pct
Level 1 

Pct
Level 

2&3 Pct
Land 21% 12% 66%
Atmosphere, Precip, Bio 8% 63% 29%
Radiation, Clouds, Troposphere, Chemistry 14% 83% 3%
Cryosphere 1% 0% 99%
Average 13% 50% 37%

 

Thus, there is an opportunity to reduce the total data volume requirement by roughly an order of 
magnitude by mining only, say, L0 or L3 data.   

The choice of which level to use for data mining depends in part on the goal.  L0 data and L1 
data products, being earlier in the processing chain, might be the best candidates for data quality 
assessment so that data quality issues originating at the sensor can be identified promptly, though 
change detection might be difficult without a consistent geolocation for periodic samples.  L1 
and L2 data products are calibrated and spatially located, and thus might be good candidates for 
event/change detection.  L3 data products are gridded and therefore more easily combined with 
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other data products, and might be the best candidates for scientific knowledge discovery of large-
scale phenomena.    

1.2.2 Earth Science Disciplines & Data Usage 

Earth science data products are associated with different disciplines of study.  Focusing data 
mining efforts on a single discipline is one way to reduce the total data volume to be analyzed.  
The following table shows the approximate percentage of data in the EOSDIS archives 
associated with different disciplines, and the percentage of archived data that is distributed to 
users.4 

Discipline
Archive 

Pct
Distribution 

Pct
Land 29% 25%
Atmosphere, Precip, Bio 57% 20%
Radiation, Clouds, Troposphere, Chemistry 13% 23%
Cryosphere 1% 11%
Total 100% 22%

 

Obviously, any given analysis focused solely within any one of these disciplines would need to 
examine at most the archived percentage of the data.  The meaning of the amount of data 
distributed is more difficult to interpret.  On one hand, this data may represent that portion of the 
archive that is of most interest, and thus data mining could be focused within that subset.  For 
example, the fraction not being distributed could include large volumes of lower level products 
that, while required to generate higher level products, are not themselves directly of interest.  On 
the other hand, the large percentage not currently being distributed could reflect the constraints 
of human capacity and limited funding for scientific research.  In that case, the most value from 
data mining might be realized by examining that data that is currently being ignored.  Further 
analysis, including an assessment of data distributed by product level, is required to better 
interpret these observations.   

1.2.3 Other Subsets 

The level of a data product and associated discipline can be viewed as just two of many attributes 
that could be used as the basis of further subsetting the total volume of archived data.  Other 
attributes include source instrument, observation time and location, data quality, and percent 
cloud-free.  Data can also be subsetted based on science parameter or spectral band.  In most 
cases, selecting a judicious subset of the data will improve the ability of a data mining algorithm 
to extract useful information.  For example, cloud free images over land will be most useful for 
learning something about land cover, whereas cloudy images over the ocean might be useful for 
learning about something else.  As another example, large volumes of raw SAR data might be 
safely excluded when mining information from radiance measurements.   The point is not to 
leave all but a small subset of the archived data unexplored, but that all data need not be 
examined by every algorithm.   

                                                

 

4  Data volume estimates courtesy of the ESDIS project as documented in [7]. 
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In the intelligent archive, data mining algorithms should have the ability to distinguish between 
relevant and irrelevant subsets of data according to their purpose.  This could be as simple as a 
filter applied to the existing metadata.  

1.2.4 Sampling and Statistical Summaries 

Sampling is a set of specific methods for subsetting data.  While potentially useful for reducing 
the total data volume, sampling must be applied with caution.   

One of the hazards of sampling is that infrequent (or isolated) but highly correlated or 
meaningful events may be missed.  In the sciences, it is not unusual for such events (including 
natural phenomena such as lightning strikes, volcanic eruptions, and tropical storms) to be of 
greatest interest.  And one of the major strengths of data mining is the ability to extract useful 
knowledge from such events.  Another hazard of sampling is that it obscures any time-periodic 
signal in the data that is greater than half the sampling frequency.   

With these cautions in mind, we must remember that most science data already represents a 
sampling of the real world.  The question is really not whether nor not sampling is appropriate, 
but what frequency of sampling is appropriate.  Depending on the data mining goals, the 
sampling frequency available from the source instrument may be too low, just right, or too high.   

In the intelligent archive, data mining algorithms should have the capability to resample data 
appropriate to their purpose.   

1.2.5 Training Sets 

In spite of the limitation of subsetting in general and sampling in particular, it is common 
practice to use only small subsets of data to train supervised classification algorithms.  Training 
sets are typically a small contiguous block or random sample of the total data volume.   

The proper size for a training set will vary depending on the type of knowledge or information 
one hopes to extract from the data.  For example, is the user interested in a global or local 
phenomena?  The training set will need to provide sufficient coverage of different conditions 
(e.g., geospatial variation, diurnal variation, seasonal variation, etc.) to produce a result that will 
be robust when applied to data containing these different conditions.   

While a general statement about the size of training sets cannot be made, an illustrative example 
may be useful.   Analysis of related to landcover might need a training set covering a few dozen 
types of landcover in varying proportions at a few times of the day over four seasons.  A few 
hundred to a few thousand data points could adequately cover all these cases...the tiniest fraction 
of an archive.  This, it is clear that for certain algorithms (e.g., supervised algorithms and rule 
induction algorithms) and for certain purposes, the data volume that needs to be considered is 
vastly less than the total archive volume.   

1.2.6 Statistical Summaries 

Depending on the data mining goals, the use of statistical summaries of the data may be 
sufficient or even preferable compared to using full-precision source data.  For example, monthly 
2500 km2 average averages may be more appropriate for inducing knowledge about climate than 
daily 5 m2 readings. [13]  Statistical summaries directly and substantially reduce the volume of 
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data volume that must be examined, e.g., an effective 30x reduction for monthly summaries 
compared to daily measures, or an effective 40,000x reduction for 1 km resolution compared to 
5 m resolution.    

In most ways, statistical summaries can be treated as higher level data products, so the same 
points discussed under Data Product Levels above applies here as well.   

Granule level metadata is also a type of statistical summary commonly found in Earth science 
archives.  However, the level of summarization is probably too great for such metadata to be 
used directly for data mining except for inferring data quality assessment rules.  Of course, 
metadata would likely be useful for selecting the data in the archive to be mined by any given 
algorithm.     

1.2.7 Derived Data 

Like humans, data mining algorithms have difficultly identifying associations with implicit 
information (e.g., that the date 10/24/04 is on a day of type weekend in a season called fall ).  
For data mining algorithms to be effective, such implicit information must often be made 
explicit.  The resulting derived data can increase the total data volume, sometimes substantially.  
For each Earth science measure, it is conceivable that there may be a dozen derived attributes 
relating to space and time for each measure.  This represents a potential order of magnitude 
increase in the volume of data to be mined.   

1.3 Additional Considerations 

1.3.1 Algorithm Computational Complexity 

Data mining algorithms vary widely in their computational complexity.  In this regard, data 
mining algorithms can be grouped into three levels of computational complexity. 

 

High.  This would include unsupervised classifiers (clustering algorithms), which 
typically examining each data point many times as they recursively explore different 
candidate clusters.  Further, these algorithms must be run on all the data every time, since 
they classify instances of observations but do not produce a compact model that can be 
used to efficiently classify additional instances.  Runtime for these algorithms can grow 
geometrically as either the number of observations or the number of dimensions 
increases.   

 

Medium.  This includes decision trees, generalized rule induction, which generate and 
utilize statistical summaries of the data to build compact models of the data, which can be 
used to evaluate additional instances.  Runtime for these algorithms can grow 
geometrically as the number of dimensions increases, but typically grows only linearly as 
the number of observations increases.   

 

Low.  This includes simple matched filters which may be the output from a more 
complex algorithm.  Runtime for these algorithms is typically linear with respect to both 
the number of observations and the number of dimensions.   

Low complexity algorithms have performance characteristics similar to current science 
algorithms, and could conceivably be applied to the total data volume, even in real-time.  These 
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algorithms are useful for extracting additional information from data, but do not really produce 
knowledge.  The medium complexity algorithms directly produce knowledge in the form of an 
induced model that represents the data.  They are typically designed to be run against 
representative subset of the data, and the value of running them against the total archive volume 
is not clear.  It is probably not feasible to run high complexity algorithms against the entire data 
volume, although there may be some value in doing so (e.g., new phenomena could be identified 
by the presence of new clusters).  Instead, these algorithms could be used to generate partially-
labeled datasets, which are then further analyzed by humans or supervised classifiers to generate 
knowledge in the form of compact models representing the data.   

1.3.2 Dimensions and Cardinality 

Most data mining algorithms are very sensitive to both the number of dimensions (fields) in the 
data and the cardinality (number of possible values) of the categorical dimensions.  For example, 
generalized rule induction algorithms will calculate statistics for various combinations of every 
value of all categorical fields.  The resulting geometric explosion can quickly overwhelm the 
physical memory of even the largest computers, so calculation of the statistics quickly becomes a 
problem of randomly accessing large amounts of disk storage.  As a specific example, brute 
force rule induction on just 10 fields with 10 possible values would require updating statistics for 
more than 10 billion combinations of values.   

Thus, for the intelligent archive, scalability requires deeper consideration than just data volumes 
alone.  In geospatial datasets, the basic number of dimensions is relatively fixed, corresponding 
to a fixed number of attributes about location, time, and conditions during the observation.  
However, the number of different science parameters or spectral bands to be considered could 
vary widely.  For this reason, knowledge building in the intelligent archive might start simply at 
first, considering the relationship between only a few science measures.  As computational 
capacity increases, a broader range of interrelationships could be considered.     

1.3.3 Data Mining Output 

The volume of information or knowledge output from data mining will often be inconsequential 
compared to the volume of mined data.  For neural networks, decision trees, generalize rule 
induction, and similar algorithms, the output is typically a small set of equations or constants 
representing equation parameters.  This output can be represented in a few dozen bytes.  For 
support vector machines, the output is an equation represented by a relatively small number 
(dozens to thousands) of support vectors and weights.  This output can be represented in a few 
thousand bytes.   

For matched filters and clustering algorithms, however, the output may be a class identifier or 
class membership weight for every data point examined.  If the input data consists of, say, less 
than ten dimensions, then the output could be more than a tenth the size of the original data.  In 
the extreme case, where every pixel is labeled by the algorithm and the primary dimensions of 
the input data (e.g., location, time) are stored implicitly rather than with each pixel, the output 
could equal the input data size.   
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1.4 Feasibility of Envisioned Capabilities 
A number of different capabilities are envisioned for the intelligent archive, including virtual 
data products, autonomous event detection, automated data quality assessment, large scale data 
mining, and dynamic feedback loops.  Realizing these capabilities will likely require different 
algorithms operating on different volumes of data.  As a result, the feasibility of implementing 
each capability, particularly in the short term, may vary considerably.  The table below 
summarizes the potential data volume reduction that could be realized in the various areas 
discussed above for each envisioned capability.  The aggregate data volume reduction is based 
on the product of reductions across all areas.  Note that the percentages shown are notional and 
only intended to give a rough sense of the degree that the total archive volume could be reduced 
while still providing a meaningful level of capability.  The aggregate data volume is the nominal 
volume to be mined assuming the estimated percentages are applied to a 4 PB archive.    

Virtual Data 
Products 

Autonomous 
Event 

Detection 

Automated 
Data Quality 
Assessment 

Large Scale 
Data Mining 

Dynamic 
Feedback 

Loops 
Data Product 
Levels (Input)5 

L0-L2 
~90% 

L1, L2, or L3 
~10-30% 

All Levels 
~100% 

L3 (primarily) 
~10% 

L0 or L1 
~10-30% 

Other Subsets Selected 
Time/Loc 

~ 50% 

Selected 
Products 

~10% 

All Data  

~100% 

Selected 
Products/Parms 

~1-10% 

Selected 
Instruments 

~10% 
Sampling User Criteria 

~75% 
All Data 
~100% 

Representative 
~.0001-100% 

Representative 
~1-100% 

All Data 
~100% 

Statistical 
Summaries 

User Criteria 
~75% 

Daily 1 km 
~3% 

Varies6 

~.0001-100% 
Daily 1km 

~3% 
Varies 

~3-100% 
Derived Data None 

~100% 
Model Parms 

~200% 
Model Parms 

~200% 
Time/Loc 

~200-1000% 
Time/Loc 

~200% 
Aggregate Input 
Data Volume 

25% 
(1 PB) 

.06-.2% 
(2-8 TB) 

.0002-100% 
(8 GB-8 PB) 

.00006-.6% 
(2 GB-20 TB) 

.06%-6% 
(2-200 TB) 

Algorithm 
Computational 
Complexity 

Low Low - Med Low Med-High Low 

Output Data 
Volume (% of 
input volume) 

Products7 

~100% 
Event 

Time/Loc 
~0% 

Data Quality 
Flags7 

(File/Pixel) 
~.0001-100% 

Statistical 
Model or 

Labeled Pixels 
~0-100%  

Tasking 
Request 

~0% 

 

Table 1.4-1 Estimated reduction of total archive data volume due to different factors for each capability envisioned for a 
knowledge building system. 

                                                

 

5  Percentages are based on MODIS products.  L1 percentage within atmospheric disciplines will be higer. See section 1.2.1 
Data Product Levels .   

6  Sampling and statistical summarization percentages are not compounded since one would not typically sample a summary in 
this case.   

7  Note that this volume is included in, not in addition to, the archive volume.   
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From this table, it is clear that there is a broad range of data volumes that could be considered for 
data mining.  The following sections discuss this range of volumes for each capability in more 
detail.   

1.4.1 Virtual Data Products 

Realizing a virtual data product capability requires the ability to dynamically generate new 
products from existing data. In the conceptual specimen architecture, this consists primarily of a 
product generation function and peer-to-peer coordination service.  For input triggers needed to 
pre-generate products intelligently, the virtual product capability relies on the autonomous event 
detection capability, which in turn uses the large scale data mining capability to generate 
statistical filters identifying relevant events.  The data volume handled by those dependent 
capabilities is considered separately.   

The data volume that must be handled by the virtual data product capability, then, is a function 
of end-user requests for data.  If this capability is to provide at least the same level of service as 
current systems, and assuming that all current data products are in fact used, the virtual data 
product capability will have to generate all data products at all levels (L1-L3) using predecessor 
levels as the source (L0-L2).   

The hope is that users are interested in only a subset of measurements based on the time and 
location of acquisition or other factors.  For example, field studies are generally only be 
interested in very limited temporal-spatial regions.  Global L3 products, of course, will pull 
tremendous amounts of data through the L0-L3 processing chain.  As discussed in 

 

Earth Science Disciplines & Data Usage above, only 22% of archived data is actually 
disseminated. The amount of data used (vs. disseminated) is difficult to determine because of 
factors like standing data subscriptions, but it likely to be substantially smaller.  On the other 
hand, access of higher level data products will require the generation of intermediate data 
products, even though those intermediate products themselves may not be distributed.  So for 
subset considerations we guess that perhaps only half of the total volume would be referenced. 

Sampling and statistical summaries could readily be employed by a virtual data product 
capability to determine the need to generate full resolution products.  In fact this is done 
somewhat today, as some algorithms only process granules meeting certain criteria such as a low 
percentage of cloud cover.   

The anticipated net reduction in data that must be handled by this capability is relatively small.8  
The algorithms, however, are also relatively low in complexity, similar or identical to today s 
science algorithms.  Since current science algorithms operate today on the full volume of data, 
virtual data products are by definition feasible, at least from a data volumes standpoint.  Of 
course, further investigation of latency given a level of computing capacity is still needed.   

1.4.2 Autonomous Event Detection 

Autonomous event detection involves constant monitoring of the incoming data stream or 
retrospective content-based search of the archive to identify events using pattern matching.  It 

                                                

 

8  The primary win is that all the resulting data products need not be stored.   
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also relies on the large scale data mining capability to generate statistical signatures or patterns 
that will be used to identify events.  The data volume handled by that dependent capability is 
considered separately.   

Different events will be best identified at different levels.  Most events of scientific interest are 
likely to be most easily identified in L3 products because change detection is easiest when one 
focuses on a single consistent location.  However, event detection at lower levels is desirable in 
certain cases, such as when performing data collection and higher level processing conditionally 
depending on the content of the observations, or when detecting catastrophic events that require 
low response times.  Events that are clearly identifiable outside the context of long term 
observations are good candidates for lower level processing.  The bottom line from the 
perspective of data volume handling is that a relatively few L3 products should be useful for 
identifying a large number of events of interest, with some optimization by developing filters on 
lower level products possible.   

Sampling will likely not be very useful, since one of the main points of autonomous event 
detection is to detect rare events that might otherwise be missed by end users.  However, 
statistical summaries are likely to be very useful.  We speculate that 1 km daily averages will be 
sufficient for identifying a large number of events of interest, including landcover changes, forest 
fires, severe storms, volcanic eruptions.   

Because event detection relies primarily on matched filters, the only derived data required will 
be the (relatively few) such parameters included in the filter.   

The matched filters used for event detection will have a relatively low computational complexity.  
Combined with a moderate total data volume, this bodes well for the feasibility of autonomous 
event detection.  That said, detection of some events will require a substantial amount of 
analysis, such as that required for edge detection.9  These may remain significant challenges well 
into the future.   

1.4.3 Automated Data Quality Assessment 

For the sake of a discussion of data volumes, two basic types of data quality assessment need to 
be considered.  The first, detection of anomalies that indicate a data quality issue, is in operation 
to event detection.  The second, assigning data quality labels based on various observed factors, 
is similar or identical to current data quality algorithms, with the exception that the quality 
function may be derived through large scale data mining rather than manually constructed.   

Because of the importance of data quality in science data systems and the potential for 
introducing defects at any point in the processing chain, data quality assessment should be 
performed on all products at all levels.  However, sampling and statistical summaries could be a 
viable means of reducing data volumes, since such techniques are regularly used today.  In some 
cases, it may be sufficient to validate a few data points among millions in a given file, which 
would be good evidence that the software that produced it ran correctly.  In other cases, it may be 
necessary to check for unusual deviations in every data point, such as an unexpected change 
overnight in land cover from an urban to dense forest classification.   

                                                

 

9  See, for example, [14] 
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Like event detection, data quality assessment must use derived data that are required parameters 
to any filter or other statistical model used.  Also like event detection, data quality assessment 
will have relatively low computational complexity, without the occasional higher complexity 
analyses required there.  This low complexity, combined with opportunities to reduce data 
volumes through sampling bode well for the feasibility of implementing automated data quality 
assessment. 

1.4.4 Large Scale Data Mining 

This capability performs all the heavy lifting for the intelligent archive, with its output used by 
all of the other capabilities as well as by end users.   

For generating knowledge of interest to end users, L3 products are likely to be most useful.  This 
is true for two reasons.  First, the resulting models will be easiest to interpret when expressed in 
terms of recognized science parameters and stable geolocations.  Second, many algorithms will 
only be able to operate effectively with consistently georeferenced data.  For generating 
statistical models used by the other envisioned capabilities, however, data mining must be 
performed at the same data level as where the resulting model will operate (as identified in the 
top row of the table).    

Data mining will likely be useful only when applied to a limited subset of data products.  This is 
because there will be known strong correlations (i.e., information redundancy) across similar 
products (say, varying only in resolution), or similar science parameters (e.g., radiance at 412 nm 
and 443 nm).   Good practice in data mining involves discarding dimensions/fields that are 
clearly of little interest with regard to the data mining goal.  It would not be unusual to use only 
one in ten available fields, and this ratio is likely to be much higher when dealing with science 
data.   

Sampling is likely to be used extensively in data mining, in keeping with common practice.  
When the goal is to build a descriptive statistical model, only a representative subset of the data 
is needed; additional data provide no additional information.  Clustering, on the other hand, may 
more typically be applied to the full set of data, unless the goal is only to partially label a 
representative set of data used by a model building process.    Statistical summaries are also 
likely to be used, since most of the needed information is contained in the summary.10   

As discussed earlier, data mining may require a large number of derived parameters to make 
certain implicit information explicit to the mining algorithm.  Although only a few derived 
parameters may be of significance, that fact is typically not known ahead of time, so more 
derived parameters may be required as input than will be contained in the output model.   

Most data mining algorithms are very computationally complex, and make aggressive use of 
heuristics and other mechanisms to try to contain that complexity.  This complexity, combined 
with a potentially large data volume, warrants caution.  From the table, it become clear that 
focusing on a representative set of data can reduce the volume of data to be handled by two 
orders of magnitude or more.  When thus constrained, the total data volume is well within the 
range of feasibility.   

                                                

 

10  For example, average monthly SST as used in [13].   
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1.4.5 Dynamic Feedback Loops 

In the conceptual specimen architecture, this capability is fed by information from event 
detection or data quality assessment.  As such, it shares the characteristics of those capabilities 
relative to data volume considerations.  One difference is that some algorithms may be 
specifically designed to operate on L0 data, and perhaps collocated with the sensor, to provide 
low-latency feedback to sensors.  In such cases, the filters would most likely be applied to the 
entire data stream, or at least a substantial portion of it.   

1.5 Illustrative Scenario 
Fire prediction is one scenario that can help illustrate this discussion of data volumes.  Two 
stages of data mining are envisioned: one to determine precursors of large-scale fire events, and 
another to detect those precursors in the stream of real-time data.   

Using the summary analysis table above as a guide, we can estimate the data volume that would 
need to be examined to achieve a fire prediction capability.  

Precursor Determination Precursor Detection 
Data Product Levels (Input) 

 

L3 

 

L3 
Other Subsets 

 

Locations of known fires 
(10,000) 

 

Additional locations without 
fires (100,000) 

 

Previous five years (1825 days) 

 

Global 

 

Selected parameters (10) 

 

Land Only (30%) 

 

Real-time 

 

Global (500M 
km2) 

 

Selected 
parameters (10)  

Sampling 

 

100% (Locations with fires) 

 

Nearby locations (without fires) 

 

None. 

Statistical Summaries 

 

None 

 

None. 
Derived Data 

 

Time, location, & weather 
attributes (10) 

 

Time, location, & 
weather attributes 
(10) 

Aggregate Input Data Volume 

 

0.0002% 

 

(20 GB) 

  

0.2% 

 

(7 TB/year) 
Algorithm Computational 
Complexity 

 

High 

   

Focusing on land conditions (e.g., vegetation index, soil moisture) and closely related 
atmospheric data (e.g., recent precipitation and surface winds) as potential precursors suggests 
that high-resolution L3 data products might be most appropriate to analyze, since we will need to 
assess the relationship between these attributes at specific fixed locations (i.e., where a fire 
occurred).    

An appropriate subset of data would include locations of known fires (for the positive case) and a 
sample of locations without fires (for the negative case).  A fairly lengthy prior time period, say 
five years, might be considered relevant.  The subset would also include perhaps on the order of 
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ten parameters representing various land conditions and related atmospheric data.  Assuming we 
examine something on the order of (at most) 10,000 fires and ten times that number of locations 
where no fire occurred yields about 200 million observations (110,000 locations x 1825 days).   

For fire prediction using precursor detection, an appropriate subset of the data would include 
high-resolution (say, 1km), real-time data over land.  If we are only interested in fire prediction 
for parochial purposes (e.g., redeployment of U.S. fire fighting resources), the geographic area 
might be further reduced.  Otherwise, no other subsetting opportunities are obvious.   

There are no obvious opportunities to use statistical summaries, so we assume no reduction there.  
It is likely, however, that a fair amount of derived data might be useful, including attributes 
about time (e.g., season, day of week), location (e.g., proximity to populated areas), and other 
ancillary data (e.g., thunderstorm presence).  Assuming on the order of 10 such parameters in 
addition to the ten science parameters, and assuming each parameter can be represented in two 
bytes yields a total data volume of roughly 8 GB, or 0.0002% of a 4 PB archive for precursor 
determination (200M x 20 x 2).  Similarly, we could expect roughly 20 GB for each observation 
period for precursor detection (500M x 20 x 2).  This amounts to roughly 7 TB per year for daily 
observations, the equivalent of 0.2% of a 4 PB archive.  Fortunately, in this scenario, the data 
volumes are low when the computational complexity is high and, conversely, the computational 
complexity is low when the data volumes are high.  So the data volume problem is tractable, 
though challenging.   

1.6 Conclusions 
The data volumes that must be handled to realize the envisioned capabilities of an intelligent data 
archive can be substantial.  However, for those capabilities where the volume is largest (virtual 
data products, autonomous event detection, automated data quality assessment, and dynamic 
feedback loops), the relative complexity of the associated algorithms is low.  As a result, 
realizing these capabilities could require no more additional computing capacity than is available 
today (i.e., a 100% increase).  But these capabilities all depend on large scale data mining, which 
has a moderate to high computational complexity.  Fortunately, the total data volume that would 
have to be mined to provide meaningful results is far less than the total archive volume, ranging 
perhaps from 2 GB to 20 TB of a 4 PB archive.  The volume to be mined can be controlled by 
focusing L3 data products, a subset of the available products at that level, and global daily 
averages.  The volume can further be constrained by using only representative samples when the 
goal is to infer a statistical model from the data.  Using moderate complexity algorithms against 
this constrained data volume is clearly challenging but also feasible.  As additional 
computational capacity becomes available, more data can be examined by more algorithms.  
There is only one obvious pathological case that probably will remain infeasible for the 
foreseeable future: running unsupervised classification on the entire data stream, or the stream at 
one data product level.  We estimate that these algorithms could require 50 times the 
computational capacity of the current science algorithms, so the cost of running them on a 
substantial portion of the data stream would be prohibitive until computing costs fall by perhaps 
two orders of magnitude.   
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